
Data Structures and
fundamentals of

Algorithm
UNIT 1

Data Types

Data Structures

Built In User Defined

1. List
2. Tuple
3. Dictionary
4. Set

1. Stack
2. Queue
3. Tree
4. Graph
5. Linked List
6. Hash map

The data structure is a specific way of storing and organizing data in the computer's memory
so that these data can be easily retrieved and efficiently used when needed later.

**Only Tree and Graph are Non-Linear, other all are linear

Abstract Data Types (ADT)
● An abstract data type (or ADT) is a programmer-defined data type that

specifies a set of data values and a collection of well-defined operations
that can be performed on those values

● Defined independent of their implementation details
● 2 types: Simple and Complex ADT
● ADT operations can be categorized as:
- Constructors: Create and initialize new instances of the ADT.
- Accessors: Return data contained in an instance without modifying it.
- Mutators: Modify the contents of an ADT instance.
- Iterators: Process individual data components sequentially.
● Eg. Date ADT, List, Stack, Queue

Abstractions
● An abstraction is a mechanism for separating the properties of an object

and restricting the focus to those relevant in the current context.

● The user of the abstraction does not have to understand all of the details
in order to utilize the object, but only those relevant to the current task or
problem.

● Types of abstractions:

- Procedural abstractions

- Data abstractions

Abstractions
★ Procedural abstractions:

➔ Procedural abstraction is the use of a function or method knowing what it does but
ignoring how it’s accomplished.

➔ Consider the mathematical square root function which you have probably used at
some point. You know the function will compute the square root of a given
number, but do you know how the square root is computed?

★ Data abstractions

➔ The separation of the properties of a data type (its values and operations) from the
implementation of that data type.

➔ You have used strings in Python many times. But do you know how they are
implemented? That is, do you know how the data is structured internally or how he
various operations are implemented?

Date ADT
● A date represents a single day in the proleptic Gregorian calendar.
● An example of simple ADT
● Operations:
1. Date(month, day, year): Creates a new Date instance initialized to

the given Gregorian date which must be valid.
2. day(): Returns the Gregorian day number of this date.
3. month(): Returns the Gregorian month number of this date.
4. year(): Returns the Gregorian year of this date.
5. monthName(): Returns the Gregorian month name of this date.
6. dayOfWeek(): Returns the day of the week as a number between 0

and 6 with 0 representing Monday and 6 representing Sunday.

Date ADT
7. numDays(otherDate): Returns the number of days as a positive
integer between this date and the otherDate.

8. isLeapYear(): Determines if this date falls in a leap year and returns the
appropriate boolean value.

9. advanceBy(days): Advances the date by the given number of days.

Other examples of ADT
● Lists- sort(), append(), clear(), del() etc.
● Stack- push(), pop(), peek(), isEmpty()

Date ADT

Bags
● A bag is a simple container that can be used to store a collection of

items.
● Allows duplicate values
● Unordered
● Cannot access individual items
● Operations that can be performed include:
- Adding items
- Removing items
- Determine if item is in bag
- Traverse over the collection of items

Bags
● A bag is a container that stores a collection in which duplicate values

are allowed.

● The items, each of which is individually stored, have no particular
order but they must be comparable.

● Bag(): Creates a bag that is initially empty.

● length (): Returns the number of items stored in the bag. Accessed
using the len() function.

Bags
● contains (item): Determines if the given target item is stored in the

bag and returns the appropriate boolean value. Accessed using the in
operator.

● add(item): Adds the given item to the bag.

● remove(item): Removes and returns an occurrence of item from the
bag. An exception is raised if the element is not in the bag.

● iterator (): Creates and returns an iterator that can be used to iterate
over the collection of items.

Bags- Examples

 Iterators
● Traversals are very common operations, especially on containers
● A traversal iterates over the entire collection, providing access to each

individual element.
● Traversals can be used for a number of operations, including

searching for a specific item or printing an entire collection
● Python’s container types—strings, tuples, lists, and dictionaries—can

be traversed using the for loop construct.
● For our user-defined abstract data types, we can add methods that

perform specific traversal operations when necessary

 Iterators
● Python, provides a built-in iterator construct that can be used to

perform traversals on user-defined ADTs.

● An iterator is an object that provides a mechanism for performing
generic traversals through a container without having to expose
the underlying implementation.

● Used with Python’s for loop construct to provide a traversal
mechanism for both built-in and user-defined containers.

 Iterators
● It consists of the methods __iter__() and __next__()

CODE 1 CODE 2

 Iterators- Create an Iterator
● To create an object/class as an iterator you have to implement the

methods __iter__() and __next__() to your object.

● All classes have a function called __init__(), which allows you to do
some initializing when the object is being created.

● The __iter__() method acts similar, you can do operations (initializing
etc.), but must always return the iterator object itself.

● The __next__() method also allows you to do operations, and must
return the next item in the sequence.

 Iterators- Create an Iterator
Create an iterator that
returns numbers,
starting with 1, and
each sequence will
increase by one
(returning 1,2,3,4,5
etc.)

ARRAYS
● An array is defined as a collection of elements of similar data type.
● Array elements are stored in contiguous memory.
● Array name represents its base address. The base address is the address

of the first element of the array.
● Array elements are accessed by using an integer index

● Types of Array: Single Dimensional Array(1-D) & Multi-Dimensional Array
(2-D OR 3-D)

Creating an Array
● An array cannot change size once it has been created.
● Array in Python can be created by importing an array module.

array(data_type, value_list) is used to create an array with data type and
value list specified in its arguments.

● Some of the data types are mentioned below which will help in creating an array of different data
types.

Array ADT- Some Methods
● append(x): Append a new item with value x to the end of the array.
● count(x) : Return the number of occurrences of x in the array.
● extend(iterable) : Append items from iterable to the end of the array. If

iterable is another array, it must have exactly the same type code If
iterable is not an array, it must be iterable and its elements must be the
right type to be appended to the array.

● insert(i, x) : Insert a new item with value x in the array before position i.
Negative values are treated as being relative to the end of the array.

● pop([i]) :Removes the item with the index i from the array and returns it.
The optional argument defaults to -1, so that by default the last item is
removed and returned.

● reverse(): Reverse the order of the items in the array.

Python Lists

● An list is defined as a collection of elements of any data type.

● List items are ordered, changeable, and allow duplicate values.

● List items are indexed, the first item has index [0], the second item has
index [1] etc.

Python Lists
● Suppose we create a list containing several values:

pyList = [4, 12, 2, 34, 17]
● the list() constructor being called to create a list object and fill it with the given

values.
● Following Figure illustrates the abstract and physical views of our sample list:

Python Lists
● In the physical view, the elements of the array structure used to store the actual

contents of the list are enclosed inside the dashed gray box.
● The elements with null references shown outside the dashed gray box are the

remaining elements of the underlying array structure that are still available for
use.

● This notation will be used throughout the section to illustrate the contents of the
list and the underlying array used to implement it.

● If there is room in the array, the item is stored in the next available slot of the
array and the length field is incremented by one

Python Lists

● For example, consider the following list operations:
pyList.append(18)
pyList.append(64)
pyList.append(6)

● After the second statement is executed, the array becomes full

Python Lists
● By definition, a list can contain any number of items and never becomes full.
● Thus, when the third statement is executed, the array will have to be expanded

to make room for value 6. (an array cannot change size once it has been
created.)

● To allow for the expansion of the list, the following steps have to be performed:
(1) a new array is created with additional capacity,
(2) the items from the original array are copied to the new array,
(3) the new larger array is set as the data structure for the list, and
(4) the original smaller array is destroyed.

Python Lists

Python Lists

Python Lists- Extending list

Python Lists- Inserting in a list

Python Lists- Removing Items

ARRAYS VS LISTS

LISTS ARRAYS

It consists of elements that belong to
the different data types.

It consists of elements that belong to
the same data type.

It consumes a larger memory. It consumes less memory than a list.

It favors a shorter sequence of data. It favors a longer sequence of data.

The lists are the build-in data
structure so we don't need to
import it.

We need to import the array before
work with the array.

TWO DIMENSIONAL ARRAYS
● A two-dimensional array consists of a collection of elements organized into

rows and columns.
● Individual elements are referenced by specifying the specific row and column

indices (r, c), both of which start at 0.
● Following: Figure shows an abstract view of both a one- and a two dimensional

array

TWO DIMENSIONAL ARRAYS

TWO DIMENSIONAL ARRAYS

MATRIX ABSTRACT DATA TYPE
● A matrix is a collection of scalar(numeric, character) values arranged in rows

and columns as a rectangular grid of a fixed size.

● The elements of the matrix can be accessed by specifying a given row and
column index with indices starting at 0

MATRIX ABSTRACT DATA TYPE

MATRIX ABSTRACT DATA TYPE

MATRIX ADT- Matrix Operations
● Addition and Subtraction.

1. Two m × n matrices can be added or subtracted to create a third m × n matrix.
2. When adding two m × n matrices, corresponding elements are summed as

illustrated here.
3. Subtraction is performed in a similar fashion but the corresponding elements

are subtracted instead of summed.

MATRIX ADT- Matrix Operations

MATRIX ADT- Matrix Operations

MATRIX ADT- Matrix Operations
● Multiplication

➔ Only defined for matrices where the number of columns in the matrix on the
lefthand side is equal to the number of rows in the matrix on the righthand side

➔ Given a matrix of size m × n multiplied by a matrix of size n × p, the resulting
matrix is of size m × p.

Sets
● A set is a container that stores a collection of unique values over a given

comparable domain in which the stored values have no particular ordering.
● Unordered
● Mutable
● Defined using { } in python or set()

Sets

Sets

Selecting a Data Structure for sets implementation
● To replicate the functionality of the set structure provided by Python, leaves

the array, list, and dictionary containers for consideration in implementing
the Set ADT

● Storage requirements for the bag and set are very similar with the difference
being that a set cannot contain duplicates.

● Dictionary would seem to be the ideal choice since it can store unique
items, but it would waste space in this case. As dictionary stores key/value
pairs, which requires two data fields per entry.

● An array could be used to implement the set, but a set can contain any
number of elements and by definition an array has a fixed size.

● To use the array structure, we would have to manage the expansion of the
array when necessary in the same fashion as it’s done for the list.

Selecting a Data Structure for sets implementation
● Since the list can grow as needed, it seems ideal for storing the elements of

a set just as it was for the bag and it does provide for the complete
functionality of the ADT.

● Since the list allows for duplicate values, however, we must make sure as
part of the implementation that no duplicates are added to our set.

Maps
● A map is a container for storing a collection of data records in which each

record is associated with a unique key.
● The key components must be comparable.

Searching & Sorting
algorithms

Searching

● Searching is the process of finding some particular element in the list.

● If the element is present in the list, then the process is called
successful, and the process returns the location of that element;
otherwise, the search is called unsuccessful.

● Two popular search methods are Linear Search and Binary Search.

Linear Search
● Linear search is also called a sequential search algorithm.

● It is the simplest searching algorithm.

● In Linear search, we simply traverse the list completely and match each
element of the list with the item whose location is to be found.

● If the match is found, then the location of the item is returned;
otherwise, the algorithm returns NULL.

● It is widely used to search an element from the unordered list, i.e., the
list in which items are not sorted.

● The worst-case time complexity of linear search is O(n).

Linear Search- Algorithm

Linear Search

Implementation of Linear Search in Python

Linear Search- Time & Space complexity

Binary Search
● Binary Search is a searching algorithm for finding an element's position

in a sorted array.

● In this approach, the element is always searched in the middle of a
portion of an array.

● If the match is found then, the location of the middle element is
returned.

● Otherwise, we search into either of the halves depending upon the
result produced through the match.

● Binary search can be implemented only on a sorted list of items.

Binary Search- Algorithm

Binary Search- Algorithm

Implementation of Binary Search in Python

Binary Search- Time & Space complexity

Sorting
● Sorting is the processing of arranging the data in ascending and

descending order.

● There are several types of sorting in data structures namely – bubble
sort, insertion sort, selection sort, merge sort, quick sort, radix sort etc.

● Sorting techniques are categorized into

★ Internal Sorting : Takes place in the main memory of a computer.

Example: - Bubble sort, Insertion sort, Quick sort, etc.

★ External Sorting: Takes place in the secondary memory of a computer,

Since the number of objects to be sorted is too large to fit in main memory.

Example: - Merge Sort

Bubble Sort
● Bubble sort is a sorting algorithm that compares two adjacent elements

and swaps them until they are not in the intended order.

● It is not suitable for large data sets.

● The average and worst-case complexity of Bubble sort is O(n2), where n
is a number of items.

● Bubble short is majorly used where -

○ complexity does not matter

○ simple and shortcode is preferred

Bubble Sort Algorithm
● Traverse from left and

compare adjacent
elements and the higher
one is placed at right side.

● In this way, the largest
element is moved to the
rightmost end at first.

● This process is then
continued to find the
second largest and place it
and so on until the data is
sorted.

Implementation of Bubble Sort in Python

Bubble Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Selection Sort
● Selection sort, also known as in-place comparison sort, is a simple

sorting algorithm. It works on the idea of repeatedly finding the smallest
element and placing it at its correct sorted position.

● Selection sort works by dividing the list into two sublists:

➔ Sorted sublist – that is built on the left end of the list from left to right.
➔ Unsorted sublist – that is the rest of the unsorted list, on the right end.

Working of Selection Sort
1. Set the first element as minimum

2. Compare minimum with the second
element. If the second element is smaller
than minimum, assign the second element
as minimum.

Compare minimum with the third element.
Again, if the third element is smaller, then
assign minimum to the third element
otherwise do nothing. The process goes on
until the last element.

Working of Selection Sort
3. After each iteration, minimum is placed in the front of the unsorted list.

4. For each iteration, indexing starts from the first unsorted element. Step 1
to 3 are repeated until all the elements are placed at their correct positions.

Implementation of Selection Sort

Selection Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Insertion Sort
● Insertion sort is a sorting algorithm that places an unsorted element at its

suitable place in each iteration.
● Insertion sort works similarly as we sort cards in our hand in a card

game.
● We assume that the first card is already sorted then, we select an

unsorted card. If the unsorted card is greater than the card in hand, it is
placed on the right otherwise, to the left. In the same way, other unsorted
cards are taken and put in their right place.

Insertion Sort- Algorithm

Working of Insertion Sort
1. Suppose we need to sort the following

array

2. The first element in the array is assumed
to be sorted. Take the second element
and store it separately in key.

Compare key with the first element. If the
first element is greater than key, then key
is placed in front of the first element.

Working of Selection Sort
3. Now, the first two elements are
sorted.

Take the third element and compare it
with the elements on the left of it.
Placed it just behind the element
smaller than it.

If there is no element smaller than it,
then place it at the beginning of the
array.

Working of Selection Sort
4. Similarly, place every unsorted
element at its correct position

Implementation of Insertion Sort

Insertion Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Merge Sort
● Merge Sort is one of the most popular sorting algorithms that is based on

the principle of Divide and Conquer Algorithm.
● Here, a problem is divided into multiple sub-problems. Each sub-problem

is solved individually. Finally, sub-problems are combined to form the
final solution.

● The MergeSort function repeatedly divides the array into two halves until
we reach a stage where we try to perform MergeSort on a subarray of
size 1 i.e. p == r.

● After that, the merge function comes into play and combines the sorted
arrays into larger arrays until the whole array is merged.

Implementation of Merge Sort

Merge Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Case Time complexity

Best O(nlogn)

Average O(nlogn)

Worst O(nlogn)

Space Complexity O(n)

Stable Yes

Quick Sort
Quicksort is a sorting algorithm based on the divide and conquer approach
where :

1. An array is divided into subarrays by selecting a pivot element (element
selected from the array).

2. While dividing the array, the pivot element should be positioned in such a
way that elements less than pivot are kept on the left side and elements
greater than pivot are on the right side of the pivot.

3. The left and right subarrays are also divided using the same approach.
This process continues until each subarray contains a single element.

4. At this point, elements are already sorted. Finally, elements are
combined to form a sorted array.

Working of Quick Sort

Working of Quick Sort

Implementation of Quick Sort

Quick Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Case Time complexity

Best O(nlogn)

Average O(nlogn)

Worst O(n2)

Space Complexity O(n)

Stable Yes

Radix Sort
1. Radix Sort is a linear sorting algorithm.
2. Radix Sort's time complexity of O(nk), where n is the size of the array

and k is the number of digits in the largest number.
3. It is not an in-place sorting algorithm because it requires extra space.
4. Radix Sort is a stable sort because it maintains the relative order of

elements with equal values.
5. Because it is based on digits or letters, radix sort is less flexible than

other sorts. If the type of data changes, the Radix sort must be rewritten.

Working of Radix Sort

Working of Radix Sort

Working of Radix Sort

Working of Radix Sort

Working of Radix Sort

Implementation of Radix Sort

Quick Sort - Time & Space complexity

● Stable sorting maintains the position of two equals elements relative to one another.

● Unstable sorting does not maintain the position of two equals elements relative to one another.

Case Time complexity

Best O(nk)

Average O(nk)

Worst O(nk)

Space Complexity O(n+k)

Stable Yes

Sorting Algorithm Time Complexity Space complexity

Bubble sort O(n2) O(1)

Selection sort O(n2) O(1)

Insertion sort O(n2) O(1)

Merge sort O(nlogn) O(n)

Quick sort O(n2) O(n)

Radix sort O(nk) O(n+k)

Linked
Structures

Unit 2

Intro to Linked Lists
● A Linked List is a linear data structure, in which the elements (data) are not

stored at contiguous (Sequential) memory location.

● The elements in a linked list are linked using pointer (address).

● Linked list is a very commonly used data structure which consists of group

of nodes.

● Each node has some information. A node contains 2 fields, 1st field is used

to store data and 2nd field is used to store address of next node.

Applications of linked list in real world
● Image viewer – Previous and next images are linked, hence can be

accessed by next and previous button.

● Previous and next page in web browser – We can access previous and
next url searched in web browser by pressing back and next button
since, they are linked as linked list.

● Music Player – Songs in music player are linked to previous and next
song. You can play songs either from starting or ending of the list.

Advantages of Linked List
● Dynamic data structure: A linked list is a dynamic arrangement so it can

grow and shrink at runtime by allocating and deallocating memory. So
there is no need to give the initial size of the linked list.

● No memory wastage: In the Linked list, efficient memory utilization can be
achieved since the size of the linked list increase or decrease at run time so
there is no memory wastage and there is no need to pre-allocate the
memory.

● Implementation: Linear data structures like stack and queues are often
easily implemented using a linked list.

● Insertion and Deletion Operations: Insertion and deletion operations are
quite easier in the linked list. There is no need to shift elements after the
insertion or deletion of an element only the address present in the next
pointer needs to be updated.

Disadvantages of Linked List
● Memory usage: More memory is required in the linked list as compared to

an array. Because in a linked list, a pointer is also required to store the

address of the next element and it requires extra memory for itself.

● Traversal: In a Linked list traversal is more time-consuming as compared

to an array. Direct access to an element is not possible in a linked list as in

an array by index. For example, for accessing a node at position n, one has

to traverse all the nodes before it.

● Random Access: Random access is not possible in a linked list due to its

dynamic memory allocation.

Types of Linked List
There are mainly three types of linked lists:

1. Singly Linked List/One Way Linked List

2. Doubly Linked List/Two Way Linked List

3. Circular Linked List

1. Singly Linked List/One Way Linked List

● In Singly linked list each node has 2 fields one for data and other is for

address of next node

● Here, we can only traverse in one direction due to the linking of every

node to its next node.

● Head node will always store the address of first node.

● Link/Next field of last node will always be NULL because it won’t point to

any other node.

● The pictorial representation of a singly linked list consisting of some items

is shown in the figure

2. Doubly Linked List/Two Way Linked List

● In doubly linked list each node has 3 fields one for data and other two for

address of previous and next node.

● Here, we can traverse in both directions.

● Head node will always store the address of first node.

● Previous field of first node and Next field of last node will always be NULL

in doubly linked list.

3. Circular Linked List

● A circular linked list is that in which the last node contains the

pointer/address to the first node of the list.

Linked List Implementation
Suppose we have a basic class containing a single data field

We can create several instances of this class, each storing data of our choosing. In the

following example, we create three instances, each storing an integer value:

Linked List Implementation
Since the next field can contain a reference to any type of object, we can assign to it a
reference to one of the other ListNode objects. For example, suppose we assign b to the
next eld of object a:

a.next = b

which output in object a being linked to object b, as shown

And at the end, link object b to object c

b.next = c

Linked List Implementation
We can remove the two external references b and c by assigning None to each, as
shown here:

The result is a linked list structure. The two objects previously pointed to by b and
c are still accessible via a. For example, suppose we wanted to print the values of
the three objects. We can access the other two objects through the next field of
the first object:

Singly Linked List Python Code

Singly Linked List Python Code

Singly Linked List Python Code

Singly Linked List Python Code

STACK

● Stack is a linear data structure and it is an ordered collection of items.

● All the items of stack are inserted and removed from the same end and

that end is known as TOP of the stack.

● Random access of items are not possible in stack.

● Every time an element is added, it goes on the top of the stack and the only

element that can be removed is the element that is at the top of the stack.

● Stack follow a particular order in which the operations (insertion/deletion

of elements) are performed. The order is LIFO(Last In First Out) or

FILO(First In Last Out) which means the item which is inserted first will be

removed out at last.

Stack Operations
1. Stack(): Creates a new (empty) stack.

2. isEmpty(): Returns a Boolean value if the stack is empty.

3. length (): Returns the number of elements in the stack.

4. pop(): Removes and returns the top element of the stack, if the stack is
not empty. Items cannot be removed from an empty stack. The next
item on the stack becomes the new top item.

Stack under- flow:

When elements are being deleted, there is a possibility of stack
being empty. When stack is empty, it is not possible to delete any item.
Trying to delete an element from an empty stack results in stack
underflow.

Stack Operations
5. peek (): Use as a reference to the item on top of a non-empty stack without
removing it. Peeking, which cannot be done on an empty stack, does not
modify the stack contents.

6. push (element): Adds the given element to the top of the stack.

Stack overflow :

When elements are being inserted, there is a possibility of stack being full.
Once the stack is full, it is not possible to insert any element. Trying to insert
an element, even when the stack is full results in overflow of stack.

 Implementing Stacks- Python Lists

 Implementing Stacks- Linked Lists

Notations
The way to write arithmetic expression is known as a notation. An arithmetic
expression can be written in three different but equivalent notations, i.e.,
without changing the essence or output of an expression. These notations are:

● Infix Notation
● Prefix (Polish) Notation
● Postfix (Reverse-Polish) Notation

Notations
● Infix Notation:
1. In an expression, if an operator is in between two operands, the

expression is called an infix expression.
2. The infix expression can be parenthesized or un-parenthesized. For

example,
➔ a + b is an un-parenthesized infix expression
➔ (a + b) is a parenthesized infix expression

Notations
● Prefix (Polish) Notation

In an expression, If an operator comes before the operands, the expression is
called a prefix expression.

● + A B its an prefix expression

● - 20 10 it's an prefix expression

Notations
● Postfix (Reverse-Polish) Notation

In an expression, If an operator comes after the operands, the expression is
called postfix expression.

● A B + its an postfix expression

● 100 10 / its an postfix expression

Precedence and Associativity of operator
Precedence of operator:

● The precedence of operators determines which operator is executed first
if there is more than one operator in an expression.

● Precedence means priority. Each and every operator has some priority
and according to the priority only expressions are executed.

Associativity of Operator:

Operators Associativity is used when two operators of same precedence
appear in an expression.

Associativity can be either Left to Right or Right to Left.

Precedence and Associativity of operator

Stack Applications- Conversion of expressions (Infix to postfix)
1. Scan the Infix Expression from left to right and repeat Step 2 to 5 for each

element of infix expression until the Stack is empty.

2. If incoming symbol is an operand , add it to the postfix expression.

3. If incoming symbol is a left parenthesis , push it onto Stack.

4. If incoming symbol is an operator ,then:

● If scanned operator (incoming operator) precedence is higher than
the operator in the stack then push the incoming operator in the
stack.

● If scanned operator (incoming operator) precedence is lower or same
than the operator in the stack then pop the operator of the stack and
again compare the incoming operator with stack operator.

Stack Applications- Conversion of expressions (Infix to postfix)
5. If a right parenthesis is encountered ,then:

● Repeatedly pop from Stack and add to postfix expression each operator
(on the top of Stack) until a left parenthesis is encountered.

● Remove the left Parenthesis.

EXAMPLE 1: CONVERT THE
BELOW INFIX TO POSTFIX

INFIX: 4 * 3 + 2 - 5

SOLUTION:

POSTFIX: 4 3 * 2 + 5 -

Stack Applications- Evaluation of postfix expressions

QUEUE

1. A Queue is a linear structure where elements are inserted from one end
and elements are deleted from the other end.

2. The end from where the elements are inserted is called rear end and the
end from where elements are deleted is called front end.

3. Queue follow principle of FIFO i.e. First In First Out, which means that
element inserted first will be removed first.

4. In programming terms, putting an item in the queue is called an
"enqueue" and removing an item from the queue is called "dequeue".

5. Queue has 2 ends “FRONT” & “REAR”.

6. “FRONT” end is used for element deletion and “REAR” end is used for
element insertion.

7. For example. At railway station people stand in a queue (line) to get
tickets and the person who will be standing first in queue will get the
tickets first and also moved out first from the queue.

Applications of Queue
1. Queues are widely used as waiting lists for a single shared resource like
printer, disk, CPU.

2. Queues are used in asynchronous transfer of data (where data is not being
transferred at the same

rate between two processes) for eg. pipes, file IO, sockets.

3. Queues are used as buffers in most of the applications like MP3 media
player, CD player, etc.

4. Queues are used to maintain the playlist in media players in order to add
and remove the songs from the playlist.

5. Queues are used in operating systems for handling interrupts.

Basic Operations of Queue
● Enqueue: Add an element to the end of the queue

● Dequeue: Remove an element from the front of the queue

● IsEmpty: Check if the queue is empty

● IsFull: Check if the queue is full

● Peek: Get the value of the front of the queue without removing it

Types of Queue
● Linear Queue

In a simple queue, insertion takes place at the rear end and removal occurs at
the front end. It strictly follows FIFO rules.

● Circular Queue

Circular Queue is a linear data structure

in which the operations are performed based

on FIFO (First In First Out) principle and the

last position is connected back to the first

position to make a circle. It is also called ‘Ring Buffer’

Types of Queue
● Double Ended Queue

Double Ended Queue is a type of queue in which insertion and removal of
elements can be performed from either from the front or rear. Thus, it does
not follow FIFO rule (First In First Out).

Implementation of Queue- Python List

Implementation of Queue- Linked List

PRIORITY QUEUE — ABSTRACT DATA TYPE
● Priority Queue is an Abstract Data Type (ADT) that holds a collection of

elements, it is similar to a normal Queue, the difference is that the

elements will be dequeued following a priority order.

● Priority Queue is an extension of queue with following properties:

1. Every item has a priority associated with it.

2. An element with high priority is dequeued before an element with low

priority.

3. If two elements have the same priority, they are served according to their

order in the queue.

PRIORITY QUEUE — ABSTRACT DATA TYPE
● A real-life example of a priority queue would be a hospital queue where

the patient with the most critical situation would be the first in the queue.

In this case, the priority order is the situation of each patient.

● Atypical priority queue supports following operations.

1. insert (item, priority): Inserts an item with given priority.

2. getHighestPriority (): Returns the highest priority item.

3. deleteHighestPriority (): Removes the highest priority item.

Applications of Priority Queue:
1. CPU Scheduling

2. Graph algorithms like Dijkstra’s shortest path algorithm, Prim’s Minimum

Spanning Tree, etc

3. All queue applications where priority is involved.

Bounded Priority Queue
● Bounded Queues are queues which are bounded by capacity that means

we need to provide the max size of the queue at the time of creation

● A Bounded Priority Queue implements a priority queue with an upper

bound on the number of elements.

● If the queue is not full, added elements are always added.

● If the queue is full and the added element is greater than the smallest

element in the queue, the smallest element is removed and the new

element is added.

● If the queue is full and the added element is not greater than the smallest

element in the queue, the new element is not added.

 Unbounded Priority Queues
● Unbounded Queues are queues which are NOT bounded by capacity that

means we should not provide the size of the queue. For example,

LinkedList

● An unbounded priority queue based on a priority heap.

● The elements of the priority queue are ordered according to their natural

ordering, or by a Comparator provided at queue construction time,

depending on which constructor is used.

RECURSION
UNIT 3

Recursive
Functions

● Recursion is a process
for solving problems by
subdividing a larger
problem into smaller
cases of problem itself
and then solving the
smaller parts.

● Recursion is a powerful
programming and problem
solving tool.

Recursive Function
● In programming terms a recursive function can be defined as

a routine that calls itself directly or indirectly.
Properties of Recursion
All recursive solution must satisfy three rules or properties:
1) A recursive solution must contain a base case.
2) A recursive solution must contain a recursive case.
3) A recursive solution must make progress toward the base
case.

Note:
Base case: It is a termination point for a recursive function.
Every recursive program must have base case to make sure that
the function will terminate. Missing base case results in
unexpected behaviour.

Recursive Function

Recursive Function
● In programming terms a recursive function can be defined as

a routine that calls itself directly or indirectly.
Properties of Recursion
All recursive solution must satisfy three rules or properties:
1) A recursive solution must contain a base case.
2) A recursive solution must contain a recursive case.
3) A recursive solution must make progress toward the base
case.

Note:
Base case: It is a termination point for a recursive function.
Every recursive program must have base case to make sure that
the function will terminate. Missing base case results in
unexpected behaviour.

Recursive Function Examples- Factorial and Fibonacci

Recursive call Trees
● When evaluating a recursive function, we typically use a

recursive call tree such as for factorial function shown in
figure.

Application Of Recursion
● Tree and graph traversal

● Sorting algorithms

● Divide-and-conquer algorithms

● Tower of Hanoi

● Fibonacci Numbers

BINARY TREE

Tree
● Tree is a data structure in which nodes represent values and

are connected via edges.

● It is non- linear data structure that is arranged in a
hierarchical fashion.

● In the tree abstract data type, proper arrangements of
elements are not important.

● A tree has the following properties:

1. The tree has one node called root. The tree originates
from this, and hence it does not have any parent.

2. Each node has one parent only but can have multiple
children.

3. Each node is connected to its children via edge.

Tree

Tree

Tree

Tree

Tree

BINARY TREE
● Binary tree is an ordered tree if

every node has zero, one or two child
nodes.

● Each node should have at most two
children in binary tree.

● Binary trees start with root node.

● Each child node in binary tree
represented as left child or right
child.

● The subtree rooted at left child is
called as left subtree.

● The subtree rooted at right child is
called as right subtree.

Properties of Binary Tree:

● If binary tree has height h, maximum
number of nodes will be when levels
are completely full. Total number of
nodes will be 2(h+1)-1

● If the binary tree has height h,
minimum number of nodes is h+1(in case
of left skewed and right skewed tree.)

● The maximum number of nodes at level
‘l’ of a binary tree is 2l

● In a non-empty binary tree, if n is
the total number of nodes and e is the
total number of edges,then e = n-1

Binary tree shown in
figure with height h
has 3 nodes.

There are various types of binary trees, and each of these
binary tree types has unique characteristics

● Full Binary Tree:
1. A Binary Tree is a full binary tree if every node has 0 or

2 children
2. It is also known as a proper binary tree.

TYPES OF BINARY TREE

● Complete Binary Tree
1. A Binary Tree is a Complete Binary Tree if

all the levels are completely filled
except possibly the last level and the
last level has all keys as left as
possible.

2. A complete binary tree is just like a full
binary tree, but with two major
differences:

● Every level except the last level must be
completely filled.

● All the leaf elements must lean towards
the left.

● The last leaf element might not have a
right sibling i.e. a complete binary tree
doesn’t have to be a full binary tree.

TYPES OF BINARY TREE

● Perfect Binary Tree

A Binary tree is a Perfect Binary
Tree in which all the internal
nodes have two children and all
leaf nodes are at the same level.

● Degenerate Binary Tree
1. A Tree where every internal

node has one child.
2. Such trees are

performance-wise same as
linked list.

3. A degenerate or pathological
tree is a tree having a single
child either left or right.

TYPES OF BINARY TREE

● Skewed Binary Tree
1. A skewed binary tree is a pathological/degenerate tree in

which the tree is either dominated by the left nodes or
the right nodes.

2. Thus, there are two types of skewed binary tree:
left-skewed binary tree and right-skewed binary tree.

Implementation of binary tree

Implementation of binary tree

● Tree traversal means traversing or visiting each node
of a tree.

● Linear data structures like Stack, Queue, and linked
list have only one way for traversing, whereas the
tree has various ways to traverse or visit each node.

● The following are the three different ways of
traversal:

1. Inorder traversal(LMR)
2. Preorder traversal(MLR)
3. Postorder traversal(LRM)

Tree Traversing Types

1. Inorder traversal(LMR)

An inorder traversal is a traversal technique that
follows the policy, i.e., Left Root Right.

2. Preorder traversal(MLR)

A preorder traversal is a traversal technique that
follows the policy, i.e., Root Left Right.

3. Postorder traversal(LRM)

A Postorder traversal is a traversal technique that
follows the policy, i.e., Left Right Root.

Tree Traversing Types

Binary Search Tree
● A Binary Search Tree is a Binary

Tree where every parent node's
left child has a lower value, and
every node's right child has a
higher value.

● A clear advantage with Binary
Search Trees is that operations
like search, delete, and insert
are fast and done without having
to shift values in memory.

Implement Binary Search Tree

Implement Binary Search Tree

Construct Binary Search Tree from an Array
Construct a Binary Search Tree by inserting the following sequence
of numbers: 10,12,5,4,20,8,7,15,13

Construct Binary Search Tree from an Array
Construct a Binary Search Tree by inserting the following sequence
of numbers: 10,12,5,4,20,8,7,15,13

HEAPS AND HEAPSORT
● In the more commonly-used heap type, there are at most 2

children of a node and it's known as a Binary heap
● A Binary Heap is a Binary Tree with following properties.
1. It’s a complete tree (All levels are completely filled

except possibly the last level and the last level has all
keys as left as possible). This property of Binary Heap
makes them suitable to be stored in an array.

2. A Binary Heap is either Min Heap or Max Heap. In a Min
Binary Heap, the key at root must be minimum among all
keys present in Binary Heap. The same property must be
recursively true for all nodes in Binary Tree. Max Binary
Heap is similar to MinHeap.

How is Binary Heap represented?
● A binary heap is typically represented as an array. • The

root element will be at Arr[0].

● Below table shows indexes of other nodes for the ith
node, i.e., Arr[i]:

1. Arr[(i-1)/2] : Returns the parent node

2. Arr[(2*i)+1] : Returns the left child node

3. Arr[(2*i)+2] : Returns the right child node

How is Binary Heap represented?
● The traversal method use to achieve Array representation

is Level Order

Max Heap
● A max-heap is a complete binary

tree in which the value in each
internal node is greater than or
equal to the values in the
children of that node.

● Mapping the elements of a heap
into an array is trivial: if a
node is stored an index k, then
its left child is stored at index
2k+1 and its right child at index
2k+2.

GRAPHS

● A Graph is a non-linear data structure consisting of
vertices and edges.

● The graph is denoted by G(E, V).

● Example: graph G can be defined as G = (V , E) Where

V = {A,B,C,D,E}

E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a
graph with 5 vertices and 6 edges.

Components of a Graph
1. Vertex : An individual data element of a graph is called

as Vertex. Vertex is also known as node. In above example
graph, A, B, C, D & E are known as vertices.

2. Edge : An edge is a connecting link between two vertices.
Edge is also known as Arc. An edge is represented as
(starting Vertex, ending Vertex). In above graph, the
link between vertices A and B is represented as (A,B).
Edges are three types:

i.Undirected Edge - An undirected edge is a bidirectional
edge. If there is an undirected edge between vertices A
and B then edge (A , B) is equal to edge (B , A).

ii.Directed Edge - A directed edge is a unidirectional edge. If
there is a directed edge between vertices A and B then edge (A
, B) is not equal to edge (B , A).

iii.Weighted Edge - A weighted edge is an edge with cost on it.

3.Outgoing Edge :A directed edge is said to be outgoing edge on its
origin vertex.

4. Incoming Edge: A directed edge is said to be incoming edge on
its destination vertex.

5.Degree: Total number of edges connected to a vertex is said to be
degree of that vertex.

6. Indegree:Total number of incoming edges connected to a vertex is
said to be indegree of that vertex.

7.Outdegree: Total number of outgoing edges connected to a vertex
is said to be outdegree of that vertex.

Types of a Graph
Graphs are classified based on the characteristics of their
edges. There are two types of graphs:

1. Directed Graphs/ Digraphs

● The edges have directions from one node towards the other
node.

● Can only traverse from one node to another if the edge
have a direction pointing to that node.

● The maximum number of edges in an

directed graph is n(n-1).

Types of a Graph
2. Undirected Graphs/ Digraphs

● Have edges that do not have a direction.
● The graph can be traversed in either direction. So it is

bidirectional
● The maximum number of edges in an undirected graph is

n(n-1)/2.

Graph Representation
● In graph data structure, a graph representation is a

technique to store graph into the memory of computer.
We can represent a graph in many ways.

● The following two are the most commonly used
representations of a graph.

1. Adjacency Matrix

2. Adjacency List

1. Adjacency Matrix

● An Adjacency Matrix is a 2D array of size V x V where
V is the number of nodes in a graph. It is used to
represent a "finite graph", with 0's and 1's. Since, it's
size is V x V, it is a square matrix.

● The elements of the matrix indicates whether pairs of
vertices are adjacent or not in the graph i.e. is there
any edge connecting a pair of nodes in the graph.

● Adjacency matrix of an undirected graph is symmetric.
Hence, the above graph is symmetric.

● If the graph is weighted, then we usually call the
matrix as the cost matrix.

● In the above graph, there is an
edge between node 1 & node 2, so in
the matrix, we have A[1][2] = 1 and
A[2][1] = 1.
● If there is no edge between 2
nodes, then that cell in the matrix
will contain '0'. For example, there
is no edge from node 1 to node 5, so,
in the matrix, A[1][5] = 0 and
A[5][1] = 0.

2. Adjacency List

● An adjacency list represents a graph as an array of
linked lists.

● The index of the array represents a node.

● Each element in the linked list represents the nodes
that are connected to that node by an edge.

● Adjacency List also follows the same rule in case of
directed graph, where the nodes will only be linked to
the nodes to whom they have a directed edge(or, to the
nodes their outgoing edges are pointing to).

● The graph in our example is undirected and we have
represented it using the Adjacency List. Let us look into
some important points through this graph:

1. Here, 1, 2, 3, 4, 5 are the nodes(vertices) and each of
them forms an array of linked list with all of its adjacent
nodes(vertices).

2. In the graph, the node 1 has 3 adjacent nodes namely --
node 2, node 3, node 4. So, in the list, the node is linked
with 2, 3 & 4.

3. Node 4 has only 2 adjacent nodes, node 1 & node 3, so it
is linked to the nodes 1 and 3 only, in the array of linked
list.

4. The last node in the linked list will point to null.

1. The process of visiting or updating each vertex in a
graph is known as graph traversal.

2. The sequence in which they visit the vertices is used to
classify such traversals. Graph traversal is a subset of
tree traversal.

3. There are two techniques to implement a graph traversal
algorithm:

● Breadth-first search

● Depth-first search

Graph Traversal

Breadth First Search (BFS) is a fundamental graph traversal
algorithm. It involves visiting all the connected nodes of a
graph in a level-by-level manner.

Breadth First Search (BFS)

Breadth First Search (BFS) is a fundamental graph traversal
algorithm. It involves visiting all the connected nodes of a
graph in a level-by-level manner.

Breadth First Search (BFS)----> Queue data structure

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

How Does the BFS Algorithm Work?

● Depth-first search is an algorithm for traversing or
searching tree or graph data structures.

● The algorithm starts at the root node (selecting some
arbitrary node as the root node in the case of a graph)
and explores as far as possible along each branch before
backtracking.

● DFS is implemented using stack data structure

Depth First Search (DFS) —---> Stack data structure

Depth First Search (DFS)

How Does the DFS Algorithm Work?

How Does the DFS Algorithm Work?

How Does the DFS Algorithm Work?

How Does the DFS Algorithm Work?

How Does the DFS Algorithm Work?

How Does the DFS Algorithm Work?

Time & Space Complexities

Algorithm Time Complexity Space complexity

Breadth First Search O(V + E) O(V)

Depth First Search O(V + E) O(V)

1. GPS systems and Google Maps use graphs to find the
shortest path from one destination to another.
2. The Google Search algorithm uses graphs to determine the
relevance of search results.
3. World Wide Web is the biggest graph. All the links and
hyperlinks are the nodes and their interconnection is the
edges. This is why we can open one webpage from the other.
4. Social Networks like facebook, twitter, etc. use graphs
to represent connections between users.
5. The nodes we represent in our graphs can be considered as
the buildings, people, group, landmarks or anything in
general , whereas the edges are the paths connecting them.

Applications of Graphs

Hashing

1. The Hash table data structure stores elements in
key-value pairs where

● Key- unique integer that is used for indexing the values

● Value - data that are associated with keys.

2. Access of data becomes very fast if we know the index of
the desired data.

3. Thus, it becomes a data structure in which insertion and
search operations are very fast irrespective of the size
of the data.

Hash Table

1. In a hash table, a new index is processed using the
keys. And, the element corresponding to that key is
stored in the index. This process is called hashing.

2. The idea of hashing is to distribute entries (key/value
pairs) uniformly across an array. By using that key you
can access the element in O(1) time.

3. Consider an example of hash table of size 20, and the
following items are to be stored. Item are in the
(key,value) format.

Hashing (Hash Function)

Hashing (Hash Function)

● The hash function is used to find the index of the array.

● The hash value is used to create an index for the key in
the hash table.

● The hash function may return the same hash value for two
or more keys.

● When two or more keys have the same hash value, a
collision happens. To handle this collision, we use
collision resolution techniques.

● There are two types of collision resolution techniques.

1. Separate chaining (open hashing)
2. Open addressing (closed hashing)

Collision Resolution Techniques

1. Separate chaining (open hashing)
● This method involves making a linked list out of the

slot where the collision happened, then adding the new
key to the list.

● Separate chaining is the term used to describe how this
connected list of slots resembles a chain.

● It is more frequently utilized when we are unsure of
the number of keys to add or remove.

● Time complexity
1. Its worst-case complexity for searching is o(n).
2. Its worst-case complexity for deletion is o(n).

Collision Resolution Techniques

Example: If we have some elements like {15, 47, 23, 34, 85,
97, 65, 89, 70}. And our hash function is h(x) = x mod 7.

Chanining

2.Open addressing (closed hashing)

● No key is kept anywhere else besides the hash table.
● As a result, the hash table’s size is never equal to or

less than the number of keys. Additionally known as
closed hashing.

● The following techniques are used in open addressing:
● Linear probing
● Quadratic probing
● Double hashing

Collision Resolution Techniques

Linear Probing:

● In linear probing, the hash table is searched sequentially that
starts from the original location of the hash.

● If in case the location that we get is already occupied, then we
check for the next location.

● Let hash(x) be the slot index computed using a hash function and
S be the table size.

1. If slot hash(x) % S is full, then we try (hash(x) + 1) % S
2. If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S
3. If (hash(x) + 2) % S is also full, then we try (hash(x) + 3) % S

 If collision occurs then the next free location in linear probing is
calculated as (u+i) where u is the location(index) where collision
occurred and i runs from 0 to (size of hashtable -1)

Quadratic Probing:

1. Quadratic probing is an open-addressing scheme where we look
for the free location using (u + i2) where u is the
location(index) where collision occurred and i runs from 0 to
(size of hashtable -1) if the given hash value x collides in
the hash table.

● If the slot hash(x) % S is full, then we try (hash(x) + 1*1) %
S.

● If (hash(x) + 1*1) % S is also full, then we try (hash(x) +
2*2) % S.

● If (hash(x) + 2*2) % S is also full, then we try (hash(x) +
3*3) % S.

● This process is repeated for all the values of i until an
empty slot is found.

Quadratic Probing:

2. For example: Let us consider a simple hash function as “key
mod 7” and sequence of keys as 50, 700, 76, 85, 92, 73, 101

Double Hashing/Rehashing:

1. In double hashing, we make use of two hash functions. The
first hash function is h1(k), this function takes in our key
and gives out a location on the hash-table. If the new
location is empty, we can easily place our key in there
without ever using the secondary hash function.

2. In case of a collision, we need to use secondary hash-function
h2(k) in combination with the first hash-function h1(k) to
find a new location on the hash-table.

3. The combined hash-function used is of the form newloc=u+v*i
Where u= h1(k) hash value, v=h2(k) hash value and i=0 to (size
of hash table -1)

4. The second hash function is used only when collision occurs

Algorithm Analysis
Unit 3

● In the above code, 4*n bytes of space is required for the array L[] elements.
● 4 bytes for n

Hence the total memory requirement will be (4n + 4), which is increasing linearly
with the increase in the input value n, hence it is called as Linear Space
Complexity.

MASTER THEOREM FOR DIVIDE &
CONQUER

Refer problems done in class

● The Master Theorem is a tool used to solve recurrence relations that arise
in the analysis of divide-and-conquer algorithms.

● Master Theorem is used to determine running time of algorithms (divide
and conquer algorithms) in terms of asymptotic notations.

● The Master Theorem provides a systematic way of solving recurrence
relations of the form:

Here n/b is the size of the sub problem, a is the number of subproblems, f(n)the
time to create the subproblems and combine their results in the above
procedure.

● The Master Theorem provides a systematic way of solving recurrence relations of
the form:

Where a ≥ 1, b > 1 and f(n)must be always positive

CASE 1: If , then

CASE 2: If , then

CASE 3: If , then

MASTER THEOREM FOR SUBTRACT &
CONQUER

Refer problems done in class

● Master theorem is used to determine the Big – O upper bound on functions
which possess recurrence, i.e which can be broken into sub problems.

● Used to directly calculate the time complexity function of 'decreasing'
recurrence relations of the form

Here n-b is the size of the sub problem, a is the number of subproblems, f(n)the
time to create the subproblems and combine their results in the above
procedure.

● The Master Theorem provides a systematic way of solving recurrence relations of
the form:

Where a ≥ 1, b > 1 and f(n)is the time to create the subproblems and combine their
results in the above procedure.

CASE 1: If a<1, then

CASE 2: If a=1, then

CASE 3: If a>1, then

